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a b s t r a c t

The aim of this paper is to demonstrate that the vibration response of systems with high

modal density excited by broadband forces can be obtained by decomposing the

response on a small number of effective shapes instead of a large number of mode

shapes. An approach for building effective shapes on the basis of a measured mobility

the space-frequency mobility matrix and a reduced model can be obtained by using only

a small number of dominant eigenvectors of the SFM matrix. Systems with high modal

density are characteristic of mid and high frequency problems where, for the sake of

robustness, energy is often preferred to local response in order to describe the behavior

of vibrating systems. The models built from the eigenvectors of the SFM matrix can be

used for energy prediction and we observe that very small models are sufficient for

prediction to within 3 dB. Two applications of the method are presented: the first uses

numerical results in the case of longitudinal beam vibrations while the second uses

experimental results obtained from plate vibrations. The method is in fact an extension

of experimental modal analysis to the vibration problems of systems with high modal

density.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In noise and vibration control, dynamic models of structures are vital tools for ensuring better acoustic quality. When an
existing structure must be improved, a model can be built by using experimental data for predicting structural responses to
modified excitations, additional excitations (active control) and after coupling with other structures.

Building models with experimental data is a well-known problem in structural dynamics and the basic approach used is
modal analysis which consists in identifying the modes controlling the response. A great deal of literature on this topic
exists and we do not intend to present it here, however the reader can refer to Ref. [1] for more information. The standard
technique is to measure the frequency response function (FRF) to extract modal information. In several mechanical
applications, high spatial resolution frequency responses are measured with a laser vibrometer, resulting in a large amount
of data. However, the data set obtained is corrupted by measurement noise. Thus one major hurdle to be overcome is that
of reducing the amount of data in order to conserve only the information associated with the few modes controlling the
response and, consequently, avoid noise. The singular value decomposition (SVD) technique is perfectly adapted to this task
of data reduction and this method has recently been presented in several papers [2–4].
All rights reserved.
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Modal analysis is adapted to the description of vibration behavior involving only a few modes, but it is not appropriate
when the number of modes participating in the response increases as in medium or high frequency vibro-acoustic
problems. In this case, it is possible to use FRF data and the mobility concept, for coupling substructures directly, see for
example [5]. As in the case of previous articles, this one uses FRF data for structure characterization. However, instead of
using FRF directly, it aims to demonstrate that in the case of a high number of modes participating in the motion, it is
possible to express the response by gathering these modes in a much smaller number of effective shapes calculated from
the measured FRF. The advantage of a description with effective shapes lies in their physical meaning, comparable for
medium frequency to mode shapes at low frequency. Thus indication through the use of effective shapes of structural zones
of high and low vibration amplitude is physically important to control the excitation of the structure. In the case of active
control with secondary sources, the effective shapes of high eigenvalues are the motions that have to be eliminated to
reduce vibrations. Statistical energy analysis (SEA) makes it possible to group modes for problems in which a very large
number of modes respond. This method assumes that all the resonant modes of a subsystem have the same energy (energy
equipartition). A large number of papers have already dealt with SEA and it is not the purpose of this paper to give a general
presentation of the method, rather it gives a simple overview. The basis of SEA was derived by Lyon and Maidanik [6], after
which Lyon [7] and Lyon and DeJong [8] provided a synthetic presentation. Much work was done on estimating coupling
loss factors (C.L.F.) to characterize the coupling of two groups of modes. Langley [9] presented a based wave method for
deriving C.L.F., Bies and Hamid [10] applied an inverse technique to identify C.L.F., and Maxit and Guyader [11] used
Karnopp’s dual formulation [12] to calculate C.L.F. from inter-modal work. Discussion on the basic SEA model (Mace and
Rosenberg [13], Finnveden [14]), as well as the extension of the method when energy equipartition is not achieved (Maxit
and Guyader [15]), have been proposed. Finally, Totaro and Guyader presented an automatic partitioning technique [16].

From these papers one can conclude that at medium and high frequencies where a great many modes respond, one
way of ensuring the appropriate decomposition of the response is to group modes rather than by treating them
independently. The goal of this paper is to explain how grouping modes in effective shapes can be done by using the space
frequency mobility matrix (SFM matrix). The SFM matrix describes the velocity of receiving points at different frequencies
in a band, when the structure is driven by a harmonic point force of unit amplitude. Each term of the SFM matrix can be
interpreted as a transfer mobility. The mobility concept is widely used in structural vibrations for source characterization
and sub-structuring techniques [17–23]. More recently, the mobility approach has been extended to vibroacoustic coupling
[24] and energy coupling [25]. Thus the experimental technique required to obtain SFM matrices has been well established
and measurements can be extended to vibroacoustic problems.

Square SFM matrices are considered in the following in order to use powerful linear algebra theorems, resulting in a
simple explanation of the physics underlying mode grouping. Measured SFM matrices are generally rectangular in medium
frequency problems, because the number of frequency points is higher than the number of space points. However, it is
straightforward to use the present method for rectangular matrices by adding columns of zeros to obtain a square matrix,
as explained in this paper.

An important property of the SFM matrix described in this paper is associated with its dominant eigenvalues.
The corresponding eigenvectors constitute a set of effective shapes that form a basis for decomposing the response. These
eigenvalues and eigenvectors are linked to the modes controlling the response but are not the modes.

A result of mode grouping is that the response can be well-approximated by decomposition on a small number of
eigenvectors (effective shapes) resulting in a reduced dynamic model. Obviously, dynamic model reduction methods have
already been proposed, in particular both Soize [26] and Ohayon [27] considered vibroacoustic problems, Ghanem and
Sarkar [28] treated stochastic systems and Guyader [29] proposed a modal sampling technique. However, the present
approach is clearly oriented towards an experimental application, since the reduced model is constructed from measured
data.

2. Definition of space-frequency mobility

A linear vibrating system is driven at point xi by the harmonic excitation of angular frequency ok and unit amplitude.
The velocity response at point xj takes the form (1):

Wiðxj;okÞexpðjoktÞ ð1Þ

Responses at several points xj for angular frequencies varying in a band according to Eq. (2) are considered.

ok ¼ Omin þ kD; k ¼ 0;N � 1 ð2Þ

where D is the angular frequency step.
The space-frequency mobility (SFM) matrix, denoted matrix Gi in the following, defined in Eq. (3), characterizes the

response of the system at all points xj and angular frequency ok, when it is excited at point xi:

Gi
¼ ½giðj; kÞ� ¼ ½Wiðxj;okÞ� ð3Þ

For the sake of simplicity, a square matrix is considered here whereas the case of a rectangular matrix is studied in
Section 5.
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The response at point xj when the excitation is located at point xi and takes form (4), can be calculated with the SFM
matrix, as demonstrated in Eq. (5).

FiðtÞ ¼
XN�1

k¼0

Ai
k expðjoktÞ ð4Þ

Wiðxj; tÞ ¼
XN�1

k¼0

giðj; kÞAi
k expðjoktÞ ð5Þ

In Eqs. (4) and (5), the discretized form of the Fourier integral is used to express the force and displacement in the time
domain. In matrix form Eq. (5) is written as:

wiðtÞ ¼ Gifi
ðtÞ ð6Þ

where the driving force and displacement vectors are:

f i
ðtÞ ¼ fAi

k expðjoktÞgwiðtÞ ¼ fWiðXj; tÞg ð7Þ

Vibration time history can be obtained by using Eq. (6) at each instant to calculate the displacements from the applied force.

3. Fundamental property of the SFM matrix

3.1. Two matrix properties

In this section two well known properties of matrices are recalled as they are of interest for the following.
1.
 The rank of a matrix equal to the product of 2 matrices, obeys Eq. (8):

rankðABÞrsupðrankðAÞ; rankðBÞÞ ð8Þ
2.
 The number of non nil eigenvalues of a matrix is equal to its rank and the product of the matrix by any vector remains in
a subspace. The eigenvectors associated with non nil eigenvalues constitute a basis of this subspace.

3.2. Case of one mode controlling the response

To establish the fundamental property of matrix Gi we initially consider that the vibration of the system under study is
described by one mode. Thus the vibratory response is given by Eq. (9):

Wiðxj;okÞexpðjoktÞ ¼ HaðokÞjaðxjÞjaðxiÞA
i
k expðjoktÞ ð9Þ

where

HaðokÞ ¼
jok

ðO2
a �o2

k þ 2jeaOaokÞMa

is the mode frequency response, Oa is the normal angular frequency of the mode, Ma the modal mass and ea the damping
coefficient and jaðxiÞ is the mode shape at point xi.

In this case matrix Gi has a simple form (10):

Gi
¼

Haðo1Þjaðx1ÞjaðxiÞ ::: ::: ::: HaðoNÞjaðx1ÞjaðxiÞ

: :

: :

: :

Haðo1ÞjaðxNÞjaðxiÞ HaðoNÞjaðxNÞjaðxiÞ

2
6666664

3
7777775

ð10Þ

It is possible to decompose matrix Gi into a product of 2 matrices:

Gi
¼ UHt

ð11Þ

Where

H ¼

Haðo1Þ

:

:

:

HaðoNÞ

2
6666664

3
7777775

and U ¼

jaðx1ÞjaðxiÞ

:

:

:

jaðxNÞjaðxiÞ

2
6666664

3
7777775
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are single column matrices of the mode frequency responses at the different excited angular frequencies and
of the product of mode shapes at the excitation point and all the observation points, while Ht is the matrix transpose
of H.

Single column matrices or single row matrices have a rank equal to or less than 1; in addition, the rank of a matrix equal
to the product of 2 matrices obeys Eq. (8). It can be concluded that the rank of the SFM matrix is equal to 1 or to 0 when one
mode controls the response.

The application of the above in the case presented here establishes the basic property of the SFM matrix when the
response is controlled by one mode:
�
 The number of non nil eigenvalues is equal to 1 or to 0.

�
 The response to any excitation vector is proportional to the eigenvector of the non nil eigenvalue.
To clarify the property, let us calculate the product of the SFM matrix by a vector v by using Eq. (10). This leads to Eq. (12):

Giv ¼ UHtv ¼ aU ð12Þ

where a ¼ Htv is a scalar value.
If v ¼ U is chosen the previous result is written as:

GiU ¼ lU ð13Þ

where l ¼ HtU appears as the eigenvalue of the SFM matrix and the single column matrix U is the associated eigenvector.
The eigenvalue can be calculated, providing:

l ¼
XN

k¼1

HaðokÞjaðxkÞjaðxiÞ ð14Þ

It is clear from Eq. (14) that the eigenvalue is nil if the excitation point is located on a node or if all the measurement points
are located on nodes. Generally, the second situation is not observed although the first one can be encountered. When the
previous case is not satisfied, the eigenvalue is different from 0. In addition, it has a high value if the mode has a marked
frequency response in the excited band; this is the case of lightly damped resonant modes, as HaðokÞ has high values in the
excited band. It should be added that the eigenvalue also depends on the number of space points considered, as can be seen
in Eq. (14).

3.3. Case of 2 modes controlling the response

3.3.1. Rank of the SFM matrix

In this case the vibratory response takes the form:

Wiðxj;okÞexpðjoktÞ ¼ ðHaðokÞjaðxjÞjaðxiÞ þ HbðokÞjbðxjÞjbðxiÞÞA
i
k expðjoktÞ

It is straightforward to demonstrate that:

Gi
¼ UHt

ð15Þ

where H ¼ ½ha hb� is a matrix with two columns where:

ha ¼

Haðo1Þ

:

:

:

HaðoNÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

and hb ¼

Hbðo1Þ

:

:

:

HbðoNÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð16Þ

U ¼ ½ja jb� is a two column matrix where

ja ¼

jaðx1ÞjaðxiÞ

:

:

:

jaðxNÞjaðxiÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

and jb ¼

jbðx1ÞjbðxiÞ

:

:

:

jbðxNÞjbðxiÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð17Þ
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The first property given in Section 3.1, Eq. (8) can be used again, demonstrating that the rank of the SFM matrix is less than
or equal to 2.

To clarify this point we proceed in the same way as in Section 3.2 to establish the dimension of the subspace generated
by the SFM matrix. Let us calculate the product of the SFM matrix by vector

v ¼

v1

:

vi

:

vN

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

which leads to Eq. (18):

Giv ¼ UHtv ¼ U
a

b

� �
ð18Þ

where the 2 component vector is written as

a

b

� �
¼ Htv ¼

XN

j¼1

HaðojÞvj

XN

j¼1

HbðojÞvj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð19Þ

In addition, using the particular form of matrix H (Eq. (16)) in Eq. (18) leads to:

Giv ¼ aja þ bjb ð20Þ

after straightforward calculation. The subspace generated by the application of matrix Gi is the linear combination of the
2 vectors ja and jb, confirming that in general the matrix rank is equal to 2. However, some particular cases should be
underlined, depending on the excitation point and the type of mode responses.

If the excitation is located on a node of a mode, for example mode a, Eq. (17) shows that vector ja ¼ 0, thus the rank of
the SFM matrix is equal to 1 and Eq. (20) is written as:

Giv ¼ bjb; ð21Þ

In the same way, if the excitation point is located on a node of both modes a and b it obviously follows that Giv ¼ 0 and the
rank of the SFM matrix is equal to 0.

Concerning the observation points, it is obvious from Eq. (17) that ja ¼ 0 if all the measurement points are located on
the nodes of mode a, reducing the rank of the SFM matrix to 1 and even to 0 if the measurement points are also nodes of
mode b. In general this situation is not observed when the number of observation points is big enough.

Influence of the type of mode is now studied. First Eq. (19) permits establishing Eq. (22):

a ¼

PN
j¼1

joj

ðO2
a �o2

j þ 2jeaOaojÞMa
vj

PN
j¼1

joj

ðO2
b �o2

j þ 2jebObojÞMb
vj

b ð22Þ

Initially, two types of modes will be considered: mass and stiffness non resonant modes in the excited frequency band.
They are characterized by a frequency response in the excited band of forms:

HaðojÞ ¼
joj

ðO2
aÞMa

; a stiffness type non resonant mode; oj5Oa ð23Þ

HaðojÞ ¼
1

ðjojÞMa
; a mass type non resonant mode ojbOa ð24Þ

If the two modes are of stiffness non resonant type we can conclude with Eq. (23) that

a ¼
ðO2

bÞMb

ðO2
aÞMa

b;

whatever the vector v. Consequently, Eq. (20) is written as:

Giv ¼ b
ðO2

bÞMb

ðO2
aÞMa

ja þ jb

 !
: ð25Þ
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Even if the 2 modes respond, the total response can be described by a single vector. The rank of the matrix is equal to 1,
meaning that the two modes can be grouped in a single contribution.

In the case of two modes of non resonant mass type, the following results can be established:

a ¼
Mb

Ma
b;Giv ¼ b

Mb

Ma
ja þ jb

� �

and the rank of the SFM matrix is equal to 1 once again.
Lastly, if one mode is of non resonant stiffness type and the second of mass non resonant type, we obtain

a

b

� �
¼

1

ðO2
aÞMa

XN

j¼1

jojvj

1

Mb

XN

j¼1

vj

joj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

In this case a relation between a and b cannot be established whatever the vector v and the general form Giv ¼ aja þ bjb
applied, indicating that the rank of the SFM matrix is equal to 2.

The case of non resonant modes is interesting when studying the possibility of grouping modes, however their
responses are low and they do not contribute significantly to the overall response. The case of resonant modes is of more
practical interest. It should first be observed that Eq. (26) holds if two modes have the same natural frequencies and
damping:

a ¼
Mb

Ma
b ð26Þ

This equation is identical to that of mass type non resonant modes and leads to the same result: both modes can be
gathered in one eigenvector. It can be added that the mode shapes have no influence on mode grouping. On the contrary,
mode grouping is impossible if the modes have different natural frequencies. In the case of systems with high modal
density, an intermediate situation arises because the modes have close natural frequencies and it can be expected that
approximate mode grouping will be observed, leading to a reduced dynamic model. In addition, damping is favorable to
mode grouping due to the smoothing of the modal frequency response. Strictly speaking, Eq. (26) is in general not satisfied,
the rank of the SFM matrix is strictly 2. However, its two non zero eigenvalues will be particular; one of them being much
bigger than the second which tends to 0 in the asymptotic case.

3.3.2. Relation between mode shapes and eigenvectors

In the following let us consider the case of two modes and an SFM matrix whose rank is equal to 2. By using Eq. (20) for
both eigenvectors we obtain:

Giv1 ¼ a1ja þ b1jb ¼ l1v1 and Giv2 ¼ a2ja þ b2jb ¼ l2v2 ð27Þ

With Eq. (27) the following can be derived:

ja ¼ cav1 þ dav2 and jb ¼ cbv1 þ dbv2 ð28Þ

It is now straightforward to demonstrate that the eigenvectors can be used as an equivalent basis for the 2 mode shapes.
Whatever the excitation of the two modes, it is possible to write the vector of the velocity response with the two mode
shapes.

fWðxj; tÞg ¼ AaðtÞfjaðxjÞg þ AbðtÞfjbðxjÞg; ð29Þ

In order to introduce vectors ja and jb as defined in Eq. (17), Eq. (29) is modified:

Wðxj; tÞ
� 	

¼
AaðtÞ

jaðxiÞ
ja þ

AbðtÞ

jbðxiÞ
jb

Finally, by taking Eq. (28) into account, we obtain:

Wðxj; tÞ
� 	

¼
AaðtÞ

jaðxiÞ
ca þ

AbðtÞ

jbðxiÞ
cb

 !
v1 þ

AaðtÞ

jaðxiÞ
da þ

AbðtÞ

jbðxiÞ
db

 !
v2 ð30Þ

This expression demonstrates the possibility of using the eigenvectors of the SFM matrix to express the velocity response to
all types of excitation. It is important to note here that even if the eigenvectors are associated with a particular point of
excitation they can be used for any excitation point and even for distributed loads. Of course, if an excitation point used for
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building the SFM matrix is located on a node of a mode, it is eliminated from the modal basis and will lead to errors when
eigenvectors are used to express responses in a general case of excitation.

3.4. General case

The results obtained in the previous sections when 1 or 2 modes were responding can be generalized as follows.
Let us introduce the eigenvalues li

a and eigenvectors vi
a of the SFM matrix, where a is the order of the eigenvalue such

that:

jli
1jZjl

i
2jZ . . .Zjli

Pjand P is the rank of the SFM matrix

The velocity vector of the system can be written as:

wðtÞ ¼
XP

a¼1

ai
aðtÞv

i
a ð31Þ

with

fai
aðtÞg ¼ ½/vi

a:v
i
bS�
�1f/vi

bwðtÞSg ð32Þ

where ½��1 indicates the inverse matrix and /S the scalar product of two vectors.
Basically, the rank of the SFM matrix is equal to the number of modes that effectively participate in the vibration field.

As shown in Section 3.2, the more a mode responds the higher the associated eigenvalue, thus taking into account
contributions of larger eigen values permits taking into account modes with high participation factors. However
contributions of modes having frequency responses with the same variation in the excited band can be grouped in one
eigenvector, thereby reducing the rank of the matrix. This is the case of non resonant contributions of the same type
(mass or stiffness) and resonant modes with the same natural frequency and damping. When proportionality is verified
approximately, the contributions of modes are not fully grouped in the same non zero eigenvalue, but in one very large
eigenvalue and other small eigenvalues of the SFM matrix. This property is of major interest for high modal density systems
where numerous modes contribute to the vibration field and have similar frequency responses (in particular when modal
overlap is achieved) and can thus be grouped in one eigenvector.

It can be concluded that to describe the vibration behavior of a system of high modal density, the contributions of small
eigenvalues can be neglected, limiting the summation in Eq. (31) to the terms with large eigenvalues.

If the eigenvectors are calculated from the SFM matrix obtained with a particular point of excitation that conserves all
the dominant modes, then they can be used for calculating responses to all types of excitation.
4. Application to longitudinal beam vibrations

4.1. Calculation of the SFM matrix

In this section, the approach is applied to longitudinal beam vibrations. This simple case was chosen to test the
approach, because exact solutions are available.

A beam of length L, cross section S, and made of homogeneous material, is excited longitudinally by a harmonic force of
unit amplitude at point xi. The response at point xj can be easily calculated (see Guyader [30], chapter 10) with the result
written as:

Wiðxj; tÞ ¼ c
sin



kð1� jZÞðL� xjÞ

�
sinðkð1� jZÞxiÞ

ð1þ jZÞsinðkð1� jZÞLÞ expðjotÞ if xioxj ð33aÞ

Wiðxj; tÞ ¼ c
sinðkð1� jZÞðL� xiÞÞsinðkð1� jZÞxjÞ

ð1þ jZÞsinðkð1� jZÞLÞ
expðjotÞ if xi4xj ð33bÞ

Here c is the wave speed, k ¼ o=c is the wave number and Z is the damping loss factor of the material. The non dimensional
angular frequency used in the following is defined as:

n ¼ oL

cp

The two expressions (33) permitted the calculation of the SFM matrix and then the determination of its eigenvalues and
eigenvectors. 150 equally spaced points of calculation and 150 frequencies in the excited band were considered in all the
examples presented.
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One important parameter is the modal overlap factor D, defined as:

D ¼ Zno
2p

where Z is the damping loss factor, n the modal density and o the angular frequency.
In the case of the longitudinal vibration of a beam, using the asymptotic modal density n ¼ 2L=c and the non

dimensional frequency n, the modal overlap factor is written simply as:

D ¼ Zn

In the first case, a beam driven at point 0.366 L is considered. It is excited in the non dimensional frequency band [9.5, 27.5],
that is to say the resonance frequencies of modes 10–27 are in the excited band. In the first case the damping loss factor is
equal to 0.005 and the modal overlap factor is small (varying from 0.0475 to 0.1375 in the excited band).

Fig. 1 presents the frequency response at point 0.033 L; it is dominated by 18 well-separated modes.

4.2. Eigenvalues of the SFM matrix

In Fig. 2, the 30 lowest modules of the SFM matrix eigenvalues are plotted. It is clear that 18 eigenvalues are significant,
corresponding to the number of resonant modes in the excited band.

When modal overlap is increased by way of a larger damping loss factor (Z=0.06), and by keeping all the other
parameters the same as in the previous case, the frequency response is smoothed as shown in Fig. 3, making it impossible
to perform the mode count.

The moduli of the SFM matrix eigenvalues are shown in Fig. 4. It can be seen that they are smaller compared to the
previous case of low damping and less than 18 eigenvalues contribute significantly, which can be explained by mode
grouping. However, increasing damping also reduces the effectiveness of the high order modes and the two effects lead to
the result presented.

4.3. Eigenvectors of the SFM matrix, effective shapes

The eigenvectors of the SFM matrix are used as the basis for building dynamic models with the approach developed in
the previous section. Thus it is important to describe their behavior. The case of a beam in longitudinal motion excited at
point 0.366 L is considered. It is excited in the non dimensional frequency band [9.5, 27.5], that is to say modes 10–27 have
their resonance frequencies in the excited band. In the first case the damping loss factor is equal to 0.005 and the modal
overlap factor varies from 0.0475 to 0.1375 in the excited band.

In the following, eigenvectors are presented by plotting a continuous effective shape function obtained from the values
of the eigenvector components in 150 points spaced equally along the beam. Fig. 5 shows the plots of the imaginary and
real parts of the first, second and eleventh effective shapes. The decomposition of beam displacements with Eq. (31)
indicates that shape functions represent displacements along the beam that can be used as an elementary motion to
decompose the velocity field. Shape functions oscillate around zero with an average wavelength that varies slightly with
the eigenvalue order. The average wavelength of the first effective shape is approximately equal to 2 L/22, while those of the
Fig. 1. Frequency response modulus at point 0.033 L, for a lightly damped beam excited at point 0.366 L. Excitation in the non dimensional frequency band

[9.5, 27.5], modes of order 10–27 are resonant in the band. Damping loss factor equal to 0.005, modal overlap factor varying from 0.0475 to 0.1375 in the

band.
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Fig. 3. Frequency response modulus at point 0.033 L for a highly damped beam excited at point 0.366 L. Excitation in the non dimensional frequency band

[9.5, 27.5], modes of order 10–27 are resonant in the band. Damping loss factor equal to 0.06, modal overlap factor varying from 0.57 to 1.65 in the band.

Fig. 4. Modulus of SFR matrix eigenvalues, with the highly damped beam excited at point 0.366 L. Excitation in the non dimensional frequency band

[9.5, 27.5], modes of order 10–27 are resonant in the band. Damping loss factor equal to 0.06, modal overlap factor varying from 0.57 to 1.65 in the band.

Fig. 2. Modulus of SFM matrix eigenvalues of a lightly damped beam excited at point 0.366 L. Excitation in the non dimensional frequency band

[9.5, 27.5], modes of order 10–27 are resonant in the band. Damping loss factor equal to 0.005, modal overlap factor varying from 0.0475 to 0.1375

in the band.
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Fig. 5. Real and imaginary parts of different effective shapes for lightly damped beam. Excitation point 0.366 L, damping loss factor 0.005, modal overlap

varying from 0.0475 to 0.1375. Non dimensional frequency band [9.5, 27.5], modes 10–27 are resonant. (a) First eigenvector, (b) second eigenvector, and (c)

eleventh eigenvector.
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second and eleventh effective shapes are similar. All these values lay between the maximum and minimum mode wave
lengths in the excited band which vary here from 2 L/10 to 2 L/27. In addition the imaginary part has an obvious similarity
with the real part.

When the excitation point is modified, the effective shapes are obviously also modified.
Damping has an influence on effective shapes, and by comparing Fig. 6 (high damping) and Fig. 5 (low damping)

it can be seen that the average wavelength of the effective shapes increases with damping. This is due to the fact that
damping has influenced the high frequencies more than the low frequencies. However, the wavelength of the effective
shapes still remains between the maximum and minimum wavenumbers of the resonant modes. A second phenomenon
associated with high modal overlap is the localization of the high amplitude of the effective shapes at the location of the
excited point.

4.4. Building dynamic models

The aim of this section is to use a simple case to illustrate how the eigenvectors of the SFM matrix (effective shapes) can
be used to decompose vibration fields and how approximation can be obtained by reducing the number of effective shapes
taken into account in the calculation.

When decomposed on the eigenvectors of the SFM matrix, the vibration field takes the form given in Eq. (31).
Decreasing the number M of eigenvectors used leads to an increasingly approximated vibration field. Good approximation
can be expected when the eigenvectors associated with the dominant eigenvalues are taken into account. To clarify this
Fig. 6. Real and imaginary part of different effective shapes for lightly damped beam. Excitation at point 0.366 L, damping loss factor 0.06, modal overlap

varying from 1.14 to 3. Non dimensional frequency band [9.5, 27.5], modes 10–27 are resonant. (a) First eigenvector, and (b) second eigenvector.
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point, the example of a beam in longitudinal motion is used again, with the SFM matrix built as in Section 4.1. To calculate
the beam response at instant t the excitation vector must be defined as Fi

ðtÞ ¼ fAi
k expðjoktÞg. Obviously, each given force

type leads to a specific excitation vector; however, the entire force time history can be built by summation of the impulses
at different instants. Consequently the results obtained from an impulse force indicate the general behavior. For the sake of
simplicity, we consider in the following the case of an impulse force applied at instant t=0. After application of the Fourier
transform, the force vector is written as Fi

ðtÞ ¼ fexpðjoktÞg. In this excitation vector, all the frequency components have the
same amplitude, but the finite size of the vector indicates that the impulse excitation is filtered in the angular frequency
band ½o1;oN�. Due to the increment do in the angular frequency characterizing two consecutive components of the force
vector, the time history can be built up to a maximum time Tmax ¼ 2p=do.

First the case of Fig. 2 is considered. A beam is excited at point 0.366 L in a non dimensional frequency band [9.5, 27.5]
such that the modes of order 10–27 are resonant (150 equally spaced angular frequencies are considered in the excited
band). The damping loss factor is equal to 0.005 and the modal overlap factor is small (varying from 0.0475 to 0.1375 in the
excited band). The SFM matrix is calculated using the same excitation point.

In Fig. 7, the beam response at instant t=0.098 (Tmax=0.4902) is reconstructed for variable numbers of eigenvectors.
When 18 eigenvectors are used, that is to say the number of resonant modes, the comparison with the exact response
Fig. 7. Comparison of exact and reconstructed (thick line) displacements along the beam at instant t=0.098, for different number of SFM matrix

eigenvectors. Beam excited at point 0.366 L, in the non dimensional frequency band [9.5, 27.5] such that modes of order 10–27 are resonant. Damping loss

factor equal to 0.005. Modal overlap factor varying from 0.0475 to 0.1375, in the excited band. (a) 18 eigen vectors, (b) 10 eigen vectors, (c) 6 eigen vectors,

and (d) 3 eigen vectors.
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obtained by using the complete SFM matrix is almost exact. When a reduced number of eigenvectors is used (10, 6 and 3),
the predicted beam response is increasingly approximated, demonstrating that significant information is ignored.

The same case is studied (Fig. 8), but here the eigenvectors are those of the SFM matrix calculated for excitation point
0.0333 L which is different from that used for calculating the beam response (0.366 L). The excitation point used for
calculating the eigenvectors is chosen close to the extremity so that it does not correspond to a node of a resonant mode.

When 18 eigenvectors are considered, the prediction agrees very well with the exact result, demonstrating that the
eigenvector basis can be built by using any excitation point but not by a node of modes dominating the beam response.
When 10 eigenvectors are considered, the prediction is not as good as it was in Fig. 7, due to the fact that the eigenvectors of
the SFM matrix include the information on the excitation point used to establish it. Thus they fit perfectly with the beam
response description when the beam is excited at the same point used for building the SFM matrix.

In the second example the same case with an increased damping loss factor (Z=0.06) is used, with a modal overlap
factor varying from 0.57 to 1.65 in the band. The corresponding eigenvalues were given in Fig. 4, while the reconstruction
results are presented in Fig. 9. Using 10 eigenvectors to reconstruct the displacement field permits quite precise prediction
Fig. 8. Comparison of exact and reconstructed (thick line) displacements along the beam at instant t=0.098, for different number of SFM matrix

eigenvectors corresponding to excitation at point 0.0333 L. Beam excited at point 0.366 L, in the non dimensional frequency band [9.5, 27.5] such that

modes of order 10–27 are resonant. Damping loss factor equal to 0.005. Modal overlap factor varying from 0.0475 to 0.1375 in the excited band. (a) 18

eigen vectors, and (b) 10 eigen vectors.

Fig. 9. Comparison of exact and reconstructed (thick line) displacements along the beam at instant t=0.098, for different number of SFM matrix

eigenvectors. Beam excited at point 0.366 L, in the non dimensional frequency band [9.5, 27.5] such that modes of order 10–27 are resonant. Damping loss

factor equal to 0.06. Modal overlap factor varying from 0.57 to 1.65 in the excited band. (a) 10 eigen vector, and (b) 3 eigen vectors.
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Fig. 10. Comparison of exact (thin line) and reconstructed (thick line) displacements along the beam at instant t=0.098, for 10 SFM matrix eigenvectors

corresponding to excitation at point 0.0333 L. Beam excited at point 0.366 L, in the non dimensional frequency band [9.5, 27.5] such that modes of order

10–27 are resonant. Damping loss factor equal to 0.06. Modal overlap factor varying from 0.57 to 1.65 in the excited band.
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and good approximation is achieved with only 3 eigenvectors. This provides a good illustration of mode grouping achieved
by smoothing the frequency modal responses with high damping. When the excitation point used to build the SFM matrix
is different from the beam excitation point, the response calculated with a reduced model of 9 eigenvectors continues to
describe vibration behavior (see Fig. 10), but agreement is not so good as it was in Fig. 9.

4.5. Energy prediction with reduced model

In certain vibroacoustic problems, the energy of vibrating systems is of greater interest than the displacement fields, as
the advantage of global prediction associated with energy is that the results are more robust. The energy time history
of vibrating systems can be calculated with the present approach and it can be assumed that a strongly reduced model is
sufficient to obtain a reasonable prediction. To investigate this point we consider the case of Fig. 9. The energy descriptor
considered in the following is the quadratic velocity of the excited structure defined by:

EðtÞ ¼
XN

j¼1

ðWðxj; tÞÞ
2
¼ /WðtÞWðtÞS ð34Þ

where /WðtÞWðtÞS indicates the scalar product of the vectors.
In Fig. 11, the level of error ðLEÞ between the exact and approximated quadratic displacements is plotted versus the

number of degrees of freedom of the reduced model.

LE ¼ 10 LogðEappðtÞ=EexactðtÞÞ

A prediction of beam quadratic velocity at a given instant can be approximated with a reduced model of small size. If an
approximation of 3 dB is sufficient, which is what is accepted in practice, then three (resp. six) dof are necessary in case of
high (resp. low) modal overlap.

Fig. 12 shows the energy response calculated when the SFM matrix is built with an excitation point different from that
used for calculating the beam response. Model reduction is not as efficient as it was previously but remains true
particularly for a high modal overlap factor. For example, if a 3 dB approximation is sufficient, models with 13 dof (Z=0.005)
and 5 dof (Z=0.06) are necessary. As expected, these models are slightly bigger than previously when the SFM matrix was
obtained with the same excitation point as the beam response.

5. The case of rectangular SFM matrices

Under experimental conditions the measured SFM Matrix can be rectangular. For example, the number of space points
can be lower than the number of frequency points. The SVD technique is often used when rectangular matrices are
considered, however to obtain the physical meaning of effective shapes in the same way as before, the approach described
above can be extended by including lines of 0 in the rectangular matrix to obtain a square one, called squared SFM matrix
in the following. Obviously, the rank of the squared SFM matrix is identical to that of the rectangular matrix, meaning that
the basic property described in Section 3 remains true. In addition, no physical information is lost in the squared SFM
matrix because the modes controlling the frequency response remain unchanged.
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Fig. 11. Level of error between exact and approximated quadratic displacements at instant t=0.098 versus the number of SFM matrix eigenvectors. Beam

excited at point 0.366 L, in the non dimensional frequency band [9.5, 27.5] such that modes of order 10–27 are resonant. Damping loss factor equal to:

(a) 0.005, and (b) 0.06.

Fig. 12. Level of error between exact and approximated quadratic displacements at instant t=0.098 versus the number of SFM matrix eigenvectors

corresponding to excitation at point 0.0333 L. Beam excited at point 0.366 L, in the non dimensional frequency band [9.5, 27.5] such that modes of order

10–27 are resonant. Damping loss factor equal to: (a) 0.005, and (b) 0.06.
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As mentioned in Section 3.2, the eigenvalues depend on the number of space points, thus the eigenvalues of the
squared SFM matrix cannot be expected to be identical to those of the square SFM matrix obtained with a higher number of
space points. Thus the results obtained by squared SFM and classical SFM matrices have to be compared by using
reconstructed vibrations rather than at the intermediate stage of the eigenvalues and eigenvectors. A numerical example
was studied describing the behavior of a beam excited at point 0.366 L in a frequency band where 18 resonant modes
were excited. This example corresponds to the case of the highly damped beam shown in Fig. 9. A squared SFM matrix
built from a rectangular SFM matrix with 150 frequency points and 80 space points was considered. The responses are
plotted in Fig. 13 and compared to those of a classical SFM matrix whose number of space points was increased
to 150.

The response obtained with the squared SFM matrix has nil components at the point located outside the beam,
corresponding to the number of 0 lines added. The non zero components calculated with 10 eigenvectors agree reasonably
with the exact beam response in which 18 resonant modes contribute. However, the results of Fig. 9 calculated from a
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classical SFM matrix with 150 space points not only have better spatial definition, but also better agreement between
approximated and exact responses.

In conclusion, the use of the present approach to the rectangular SFM matrix is straightforward, but the approximation
obtained with a reduced number of eigenvectors is slightly poorer in comparison to that of the square SFM matrix.
To obtain the same precision when using a rectangular SFM matrix instead of a square SFM matrix, more eigenvectors have
to be considered. As a rule of thumb based on the result obtained in the beam example, an increase of 10% seems
reasonable.
6. Experimental validation

In order to verify whether the approach can be used experimentally, we measured the SFM matrix on a clamped
aluminum plate of thickness 0.003 m, length 1.5 m and width 0.95 m. The driving force was generated by a shaker placed at
point (0.93, 0.35), and the velocity was measured by a laser vibrometer at 851 positions placed on a grid of 23 by
37 locations. The modal density of the plate was equal to 0.1732 modes/Hz. The frequency band under study varied from
700 to 1550 Hz and measurements were performed with one hertz resolution. The band contained 147 resonant modes.
Fig. 13. Comparison of exact (thin line) and reconstructed (thick line) velocities at instant t=0.098, for 10 SFM matrix eigenvectors obtained with a

rectangular matrix (80�150). Beam excited at point 0.366 L, in the non dimensional frequency band [9.5, 27.5] such that modes of order 10–27 are

resonant. Damping loss factor equal to 0.06. Modal overlap factor varying from 0.57 to 1.65 in the excited band. Rectangular SFM matrix of 80 space points

and 150 frequency points. (a) Physical and added points, and (b) physical points inside the beam.

Fig. 14. Velocity modulus at point (0.042, 0.52) versus the frequency, case of a rectangular clamped aluminum plate excited at point (0.93, 0.35) by a unit

force. Plate dimensions are: thickness 0.003, width 0.94, and length 1.5.
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An example of the frequency response function is presented in Fig. 14. It was measured at point (0.042, 0.52) located
near the edge of the plate and numerous modes can be seen to participate in the response. Also, modal overlap is achieved
for high frequencies in the band but not for low frequencies.

The SFM matrix was built from measured velocities and then calculated eigenvalues of which the first 300 are plotted in
Fig. 15. It can be seen that the high order eigenvalues do not reach zero in comparison to the theoretical cases studied in
Section 3. This is due to measurement uncertainties.

The plate velocity field at observation time t=0.0667, resulting from impulse excitation at t=0, is presented in
Fig. 16 for different sizes of the reduced model. When 75 eigenvectors are considered, the vibration field is almost identical
Fig. 15. Eigenvalues of SFM matrix of a rectangular clamped aluminum plate excited at point (0.93, 0.35) by a unit force in the frequency band from

700 Hz to 1551 Hz. Plate dimensions are: thickness 0.003, width 0.94, length 1.5.

Fig. 16. Velocity field at instant t=0.0667 of a rectangular clamped aluminium plate excited at point (0.93, 0.35) by a unit impulse force filtered in the

frequency band from 700 to 1551 Hz. Plate dimensions are: thickness 0.003, width 0.94, length 1.5. (a) Exact result, reduced model with (b) 75 dof,

(c) 50 dof, and (d) 25 dof.
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to the exact one and the result remains quite good when 50 eigenvectors are used. Differences appear for 25 eigenvectors
even if the global tendency is captured. Surprisingly, very large vibrations appear at some boundary points of
the contour map. However, the boundary points of the map do not correspond to the clamped boundary points of
the plate, being located 4 cm from it. As mentioned previously, 147 resonant modes contribute to the response and the plate
velocity field is almost exact when 75 effective shapes are used to calculate the response. As expected, decreasing
the size of the reduced model leads to an approximation of the response that nonetheless remains acceptable up to
25 effective shapes.

Lastly, the level of energy error LerðtÞ versus the number of dof of the reduced model is presented in Fig. 17.

LerðtÞ ¼ 10 Log

R
sðVappðM; tÞÞ2 dmR

s



VexactðM; tÞ

�2
dm

0
B@

1
CA

where
R

sðVappðM; tÞÞ2 dm, is the approximated quadratic velocity and
R

sðVexactðM; tÞÞ2 dm, the exact one.
Due to the frequency band of the calculation (up to 1551 Hz) and the frequency step of 1 Hz, the possible observation

time must be located in the interval from 0.00064 to 1 s. The global tendency of the approximation versus the size of the
Fig. 17. Level of error on quadratic velocity, at different instants, versus size of the reduced model. Rectangular clamped aluminum plate excited at point

(0.93, 0.35) by a unit impulse force filtered in the frequency band from 700 to 1551 Hz. Plate dimensions are: thickness 0.003, width 0.94, length 1.5.

(a) t=0.032, (b) t=0.064, (c) t=0.128, and (d) t=0.516.
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reduced model remains unchanged whatever the observation time after impulse excitation. As expected, the level of error
on the quadratic velocity is greater when the size of the reduced model is smaller. It is generally admitted in practice that
an error of 3 dB on the energy level is acceptable. With this criterion a reduced model with 15 dof is sufficient, which is a
considerable reduction compared to standard modal decomposition in which at least 147 resonant modes must be
considered.

7. Conclusion

In this paper we demonstrated that vibrations of systems of high modal density excited by broadband forces can be
obtained by decomposing the response on a small number of effective shapes instead of using standard modal expansion.
This result was explained by the phenomenon of mode grouping occurring in systems of high modal density.
A presentation was given of an approach for building effective shapes from measured mobility matrices. This approach is of
interest for systems with high modal density characteristic of mid and high frequency vibroacoustic problems. For the sake
of robustness, energy is often preferred to local response for describing vibration behavior. In this case the number of
effective shapes necessary for good precision is greatly reduced compared to the number of modes participating in the
response. Applications of the method to plate vibration were presented and measured mobilities were used to build
effective shapes and calculate the vibration velocity field and plate energy. Using the plate experiment data reported here,
we observed that 15 effective shapes were sufficient to predict energy with an error less than 3 dB, in a frequency band in
which 147 modes respond.
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